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STATISTICAL ANALYSIS OF THE VARIABILITY OF QUASAR 3C 273 

L. M. Ozernoy and V. E. Chertoprud 

ANNOTATION 

The s t a t i s t i c a l  r e s u l t s  o f  observation data r e l a t i v e  t o  cyc l ica l  changes 

On the  bas i s  of an analy- i n  brightness'' o f  quasar 'jC 273 are given herein. 

sis of random deviations of s ignals  from t h e  mean s t a t i s t i c a l  t r a j ec to ry  we 

obtained some curves of a s y s t e m  approximated by the  simplest v ibra t iona l  

equation with one degree of freedom ( l a ) ,  The period of dynamic movement 

T = 9 years  (2). and the  mean r ig id i ty  characterizing the asymptotic s t a b i l i t y  

yv -1 of t h e  l imi t ing  cycle i s  N 2 I year 

was not  discerned within the  l i m i t s  o f  the  mater ia ls  on hand. 

sion increases  with time i n  accordance with the  law o f  diffusion (21) .  

chaot ic  component of motion speed i n  the l i m i t  cycle i s  o f  t h e  regular order 

(16). The influence o f  synchronization 

Phase disper- 

The 

(231. 

The basic  model of  t h e  central  region o f  a quasar i n  which the  cyc l ica l  

chanpes i n  flux a r e  considered a re  analyzed from the  point of  v i e w  o f  require- 

ments imposed on the mechanism of va r i ab i l i t y .  Preliminary considerations 

t e s t i f y  i n  favor of t h e  osc i l la tory  model, spec i f ica l ly ,  c i rcu la tory  movements 

i n  a magnetoid 12-14. 

The a r t i c l e  is being published i n  the Journal of AstronomyLAstronomiche- 
skiy Zhurnal] 40:. I!'?, 4. 1966. 

, -  --. - 
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1. Introduction 

Immediately following the remarkable discovery i n  1963 o f  quasars by 

and Greenstein , systematic changes i n  the  l i g h t  f lux from these 1 2 Schmidt 

sources were detected, 

by t h e  f irst  considerations, namely t h a t  these were pecul iar  s ta r - l ike  ob- 

j e c t s  i n  our galaxy i n  a c r i t i c a l  phase of evolution. 

t he  extra-galact ic  loca l iza t ion  o f  quasars3v4 presented to our as t rophys ic i s t s  

the remarkable f a c t  t h a t  these objects  of  a non-stellar nature,  sometimes vas t  

cosmologic dis tances  away, give o f f  emanations which change comparatively 

quickly i n  time. 

Attempts to explain the  v a r i a b i l i t y  were stimulated 

Evidence pointing t o  

Mathews and Sandage5 w e r e  the  f i r s t  t o  confirm this v a r i a b i l i t y  from the  
6 

objec t  3C 48 on the  b a s i s  of  photoelectr ical  observation. 

who studied a col lect ion of photographs a t  the Harvard College Observatory 

gathered over a period o f  80 years,  established t h a t  there  were s imilar  var i -  

a t ions  i n  f l u x  from 3C 273. A. S. Sharov and Yu. 3. Yefremov7 who studied 

the  "glass l ib rary"  p l a t e s  a t  the Shternberg S ta t e  I n s t i t u t e  of Astronomy, 

a s  proposed by I. S. Shklovskiy, s i m l t a m w ~ s l y  and independent2y establ ished 

the  br ightness  v a r i a b i l i t y  i n  3C 273. Sandage 8 pointed t o  t he  p o s s i b i l i t y  of 

v a r i a b i l i t y  i n  the  op t i ca l  f lux from 3C 196. I n  t h a t  case, t h e  difference i n  

brightness between two observations made seven months apar t  i s  considerably 

grea te r  than any chance of a pmbable error .  

of v a r i a b i l i t y  i n  other  recent ly  discovered quasars (3C 287, CTA-102 and 

o thers )  i n  which successive observations of the deeree of br ightness  have 

Smith and Hoff le i t  , 

Not excluded i s  the  probabi l i ty  

disclosed ra ther  marked differences 9 . 
The pecu l i a r i t i e s  i n  flux var ia t ion from 3C 273'' and 3C 48 8 are  known 

i n  r a the r  considerable d e t a i l  today. 

processing of data) of t he  brightness curve of source 3C 273 enables u s  t o  

A d i r e c t  study (without any s t a t i s t i c a l  
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divide with confidence these changes in to  three  components 6,10911: 1) very 

rapid chaotic changes (approximately b;y 60%) i n  t he  flux f o r  periods o f  from 

one week to a month; 2)  ra ther  regular ( cyc l i ca l )  va r i a t ions  i n  br ightness  

with changes o f  30$ i n  amplitude and over a cha rac t e r i s t i c  period of 10  years; 

3) a slow epochal f lux approximately 3Oof per  hundred years. 

l i g h t  f l ux  from 3C 48 has s imilar  properties.  

c a l  observations made of this source8 show changes i n  op t i ca l  f lux by 405 over 

a period of 600 days and 10% over several days; t he  epochal trend i s  a change 

of y$ per  centuryl l .  

The var iable  

The three color photoelectr i -  

It can be assumed t h a t  the  property o f  var iable  radiat ion i s  an impor- 

t a n t  property of  quasars and i s  closely re la ted  t o  the  processes occurring i n  

t h e i r  cores. 

l i g h t  on the  mechanih of  physical phenomena i n  the  cores of sources, which, 

f o r  the  t i m e  being, is t h e  subject merely of t heo re t i ca l  syntheses. Moreover, 

i n  addition t o  dividlng the variable f l u x  in to  i t s  components and developing 

a coarse upper l i m i t  of dimensions o f  t h e  op t i ca l  source6 the  information con- 

ta ined i n  t h e  curve of brightness o f  the sources was na t  used aqwha~e .  

study i s  t h e  f i rs t  attempt of i t s  kind. I n  t h e  following we sha l l  give the  

results o f  a s t a t i s t i c a l  analysis  o f  cyc l ica l  v a r i a b i l i t y  i n  3C 273, the  most 

commonly studied objec t  a t  the present t i m e ,  ??e can expect t h a t  the property 

of  regular v a r i a b i l i t y  inherent i n  t h i s  quasar source i s  typ ica l  of  ob jec ts  

found i n  a s imilar  stage of evolution, 

mechanism of v a r i a b i l i t y  a s  obtained from an analysis  of  t he  brightness curve 

a re  given i n  Chapter 111, 

Hence, a study of the property of v a r i a b i l i t y  can c a s t  some 

The 

The necessary requirements f o r  the  

These data can be compared with quasar models 

(Chapter IV) proposed a t  the  present time. Along with an analysis  12.13.N 

of c e r t a i n  general requirements f o r  quasar models and the mechanism o f  t h e i r  
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v a r i a b i l i t y  t h i s  study poin ts  up some of  inef fec t ive  aspects  of ce r t a in  models; 

on t h e  o ther  hand, these data  provide the  n e c e s s a v  information f o r  a more 

thorough development of o ther  models. 

I. A S t a t i s t i c a l  Analysis o f  t h e  Briahtnsss Curve of 3C 272 
10 The ra ther  uniform mater ia ls  we have on changes i n  brightness of 3C 273 

enables u s  t o  study, fo r  t he  t i m e  being, only the  long period var ia t ions  with 

a cha rac t e r i s t i c  time of 10  years,  This has t o  do with the  f a c t  t h a t  the  data 

published" a r e  an average o f  t h e  or ig ina l  observations. Therefore, by way of  

preliminary treatment we s l i d e  smoothed the  data  o f f  [ skol zyashcheye sglazhi- 

vaniye] with an in t e rva l  of  two years and eliminated them from the secular 

trend. 

a l l  t he  known values of brightness fo r  t h e  source i n  the  in t e rva l  T1 - 1 .; t \ 
< T1 + 1 and took t h e  mean from these taking i n t o  account the  accuracy of 

averaged observations given i n  lo. 

The smoothing consisted of the  following: f o r  t he  year T1 we extracted 

Select ion of t he  smoothing interval  valueLlwas d ic ta ted ,  on the one hand, 

by the  need to decrease the "external hum" (not  per ta ining t o  t h e  s igna l  shaped 

by t h e  system though re la ted  t o  the conditions of  propagation of t h e  signal 

and var ious kinds of observation e r rors ) ,  and on the o ther  hand, by a des i re  

t o  preserve the  g rea t e s t  possible amount of d e t a i l  i n  t he  information under 

analysis ,  Both these aims may be achieved i f  we se lec t  a s  equal t o  2 years ,  

This smoothing process i s ,  essent ia l ly ,  t he  f i l t r a t i o n  of  a s ignal ,  which i s  

frequently done i n  the  s t a t i s t i c a l  processing of materials.  

noted t h a t  the  f i l t r a t i o n  mieht have been improved i f  the  or ig ina l  separate 

observations of brightness o f  3C 273 had been available.  

i n g  and reading of f  t he  t rend are  shown i n  Table I and i n  Fig. I. 

subsequently, the  following scale i s  used f o r  convenience: 

It should be 

The r e s u l t  o f  smooth- 

Here, and 

uni ty  x = 071. 
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The shape of Figure I conf i rm the conclusion regarding the  existence 

of regular va r i a t ions  i n  f l u x  with a duration o f  the  order of 1 0  years. 

would be purposeful t o  s e t  up the  following problem: 

It 

approximate the  curve 

x ( t )  by t h e  simple vibrat ion equation with one degree o f  freedom *). . 

If ,<u E 0, t h e  system i s  autonomous. If 0 and g ( t )  i s  the  per iodic  

function, we are  dealing with a synchronized system. 

equation (I) has a s table  periodic solution X,!kl z%(iy'rl= 1 

I n  a r e a l  v ibra t iona l  system there are f luc tua t ions  a s  a r e s u l t  o f  which 

It i s  assumed t h a t  

there  a r e  deviations i n  the  signal [strength] from s t r ic t  per iodic i ty ,  so 

t h a t  t he  changes i n  s ipnal  [strength] i n  time assumes a cyc l i ca l  character.  

Taking i n t o  account the small f luctuat ions,  t h e  equation changes i n  signal 

strength appears a s  follows: 

It i s  the  existence of i n t e rna l  f luctuat ions i n  the system t h a t  makes it pos- 

s ib l e ,  on the  bas i s  of random deviations of a signal from a per iodic  solution, 

t o  f i nd  the  cha rac t e r i s t i c s  o f  a f luctuat ing system without assuming any 2 

p r i o r i  judgements about it 15  , The most e s sen t i a l  of the  assumptions a t  which 

an ana lys i s  i s  fair15,  i s  to fu l f i l l  the conditions of a shor t  cor re la t ion  

of f luctuation: 

< F ( t )  F ( t  4 T)' 2 0 with T )Tq,(< T, 

i n  which the  sign( > i s  the  mathematical expectation, Tq- i s  the  in t e rva l  o f  

cor re la t ion ,  and T i s  the  period, 

* The use of an equation of a higher order seems premature, f o r  the  
t i n e  being, due t o  the paucity of observation materials. 
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Sett ing up a concrete type of equation ( I a )  on the bas i s  of a study of 

t he  correlat ion proper t ies  of the  signal being studied could be effected ac- 

cording t o  t h e  method set f o r t h  i n  reference 16, but  t he  low number of ob- 

served cycles  permits u s  t o  o f f e r  only a l i n e a r  approximation. 

proximation the  l imi t ing  cycle ( for  an autonomous system) o r  t he  dynamic t r a -  

I n  this ap- 

jectory ( f o r  t h e  captured qystem) coincide with t h e  mean s t a t i s t i c a l  t r a j ec -  

tory describing t h e  poin ts  o f  t h e  system on t h e  phase plane. 

Having a seaiience of  po in ts  xi = x(?), %-1 - 5 s 1 year (cf .  Fig.  I 

and Table I) we f i n d  yi = +(?, - 
poin ts  

describes the  poin ts  of  t h e  qvstem. 

), and successively connecting the  

of t h e  smooth curve, we get a "s tochat ic  trajectory' '  which 9,  y; 
I n  order t o  compute the  mean s t a t i s t i c a l  

t r a j ec to ry  we use t h e  method of successive approximations. 'de a re  looking 

f o r  a closed curve with the  following properties:  any normal aFplied t o  it 

i n t e r s e c t s  it a t  a point which coincides (within the  limits o f  e r r o r s  imposed 

by t he  l imi ted  scope of select ion)  with the  center of  gravi ty  of po in ts  of  

i n t e r sec t ion  of this normal w i t h  the s tochat ic  t r a j ec to ry  17 . 
The mean s t a t i s t i c a l  t ra jectory obtained as  a r e s u l t  o f  computations 

xo( 6 )  i s  shown i n  Fig, 2. 

and t h e  shape of the  curve xo( (?) can, within t h e  limits of accuracy of  t he  

The period. o f  the cycle proved t o  be T = 9 years,  

observations, be described a s  a sinusoid 

2 ,  (01 = 1.25 Sin r 

It goes without sayving tha t  the amplitude of  dynamic deviations ( 2 )  i s  
10  

smaller than t h e  mean amplitude of changes i n  brightness of o r ig ina l  data 

i n  which both t h e  in t e rna l  f luctuation i n  the  system and the "external noise" 

a r e  superimposed on the  dynamic pulsations. 

Changing Over to a l o c a l  system of coordinates {n, 6 )  , associated with 

the  mean s t a t i s t i c a l  t ra jec tory ,  i n  a l i n e a r  approximation we ge t  t h e  following 

16  equations : 

6 



d t  dn +/+j.!Q = Fn . , (3) 

(4 )  
3 -@+ K J  ==FJ 

Here, f l  i s  the  distance from the point described to the  nearest  po in t  o f  

the  terminal cycle having t h e  tangent ia l  coordinate e? ; g= @-tis t h e  tangent ia l  

departure, F,, and F a r e  f luc tua t ions  which fo r  an unsmoothed signal would be 
4 

$-correlated (with the na tura l  assumption t h a t  t he  non-smoothed f luc tua t ions  

a re  “white noise”) , and following smoothing 

where 

= 2 years  i s  the  in t e rva l  of  .moo i n  which t,-,. 2 

dispersion of smoothed fluctuations,  

ing,  and (F2> As the  

The meaning of t h e  values N,  @,p L,  K i s  a s  follows. The coef f ic ien t  

N,  hereaf ter  referred t o  a s  r ig id i ty  [zhestokost ( 3  character izes ,  i n  the 

absence of  f luctuat ion F, t h e  speed of re turn  of  t he  point of  descr ipt ion 

t o  t.he l imi t ing  cycle. The coeff ic ient  8 takes  i n t o  account the  influence 

o f  normal deviations from the  l imit ing cycle on t h e  speed of change i n  tan- 

gen t i a l  departures r o f  t h e  imaging point  and is re la ted  t o  N through the  

following relationship: 

i n  which y0(6) = d x o ( b ) / d 4  and ‘pis the angle between the  ax i s  of ordinates  

and the  normal to the  l imi t ing  cycle, With M f 0 (non-autonomous system) 

the  coef f ic ien ts  L and K a r e  determined by t h e  shape of the  synchronizing 

f ac to r  g ( t )  i n  (I) and they are  related by the  relationship: 

The short  duration o f  recording x ( t )  ( a  t o t a l  o f  8 cycles) does not make it 

possible  to obtain coef f ic ien ts  of equations (3) and (4) a s  posi t ion functions 



on the  tenninal  cycle. 

evaluation of t h e  mean values o f  these coe f f i c i en t s  by a method s imilar  t o  

We sha l l  have t o  r e s t r i c t  ourselves merely t o  an 

t h a t  set f o r t h  i n  reference 16. 

To evaluate t h e  coef f ic ien ts  of t h e  ys tem (3) - (4) we computed func- 
__L 

t i o n s  ( A  &'= ) p d  (ql which depicted t h e  s t a t i s t i c a l  nature o f  t he  de- 

v i a t ions  and$ : 

i n  which '1" changes from 

shown i n  Table 1 . * 
1 t o  30, while k = 71 i s  the number of  observations 

1 

I n  order to explain the  relationshiF( A a/, )2iand ( dhC )? 'shown below i n  

Figs. 3 and 4 with t h e  coef f ic ien ts  of the  system ( 3 )  and (4) we sha l l  con- 

s ider  from the  outse t  the more simple equation: 

Here, A = const. ,  F i s  a random function with the  following properties:  

( F c f , F ( f ~ ~ ) = A ~ F ' > F ~ d  j if?'O , (10 1 

whereupon < F2 > is the  dispersion smoothed off with an in t e rva l  A ; func- 

t i o n  F i s  a constant; s(~')is a delta function, 

Following a ser ies  of conversions we can get: 

((A& crztt m(tp+ d - ~  -q-P").: A (11) 

In  boundary cases (11) gives us the following: 

,?-to : <fAEC\ '>4  4*<F2.br 1 (12) 
.I 

This case corresponds t o  the  Vinerovskiy process described by t he  equation 

This s i tua t ion  corresponds t o  the random process of the same type a s  F and 

described by equation ;Z = F/A. 

* Takina in to  account t he  omission in Table 1 of data  necessary f o r  
computation, t he  formulas are somewhat more complex. 

8 



If the  function F i n  (9) w i l l  have, instead of  the  property (lo), a ter- 

minal i n t e rva l  of  cor re la t ion  A similar to the r i g h t  hand members i n  ( 3 )  - 
( b ) ,  i . e . ,  < F ( t ) F ( t  +T) >. 0 with /rbn, then the  result (11) with 

will prac t i ca l ly  not change, 

by a per iodical ly  changing function will result i n  replacing i n  (11) t h e  value 

I n  l i k e  manner, replacing the  constant A i n  (9) 

A by i t s  mean value f o r  t h e  period and the addition of o s c i l l a t i n g  members 

which will remain ins igni f icant  during t h e  short  period of recording. 

We sha l l  now re fe r  t o  t he  or iginal  System ( 3 )  - ( b )  and compare equation 

(4) with equation (9). 

a t i m e  i n  (4) from member &1 ( i n  the following it w i l l  be demonstrated t h a t  

disregarding i t  p rac t i ca l ly  does not change the form <3:2f> 

By way of  a first approximation we sha l l  d igress  f o r  

I even when 

, computed ac- >, 2). Then establ ishing the  relationshp of value <i-<$+ 

cording t o  ( 7 ) ,  with K and < F t  from (4) i s  fully analogoiis to the  der ivat ion 

4 ( @  >-'&. . #  / from (9) considered above, We sha l l  consider t h e  relat ionship of 
- 

;~i;)' ' to T i n  Fig. 3. 

a f a c t  t h a t  corresponds to case (12). 

t h e  strength o f  (6a) we w i l l  g e t r  = 0. 

The course of f A & ) "  e t  l a rge  7 i s  close to l inea r ,  

I n  o ther  words, i n  (4) K = 0, and on 

The f a c t  t h a t  coef f ic ien ts  M and K a re  equal to zero poin ts  to t h e  s y s t e m  

being autonomous, i . e .  , the  absence i n  equation (1) of var iab le  t. More spe- 

c i f i c a l l y ,  it can be s t a t ed  t h a t  no synchronization of  systems is manifested, 

a t  t e a s t  within t h e  limits of  the time in t e rva l  - 3T 51- 30 years  ( i t  i s  i m -  

possible t o  determine, f o r  the time being, whether synchronization exists a t  

a greater  i n t e rva l  since the  time of observation would be about 80 years) .  

Equations (3) - (4) averaged f o r  cycles with N = 0 and K 2  0 can be s e t  

down a s  

9 



i n  which t h e  symbol A ind ica tes  averaging for  cycle, a f t e r  which = const, 
r*c 5 = const. We sha l l  now determine coeff ic ients  f; and &. Equation (14) i s  

analogous t o  equation (9) analyzed in  the  above, a f a c t  which makes it possi- 

b le ,  with the  a id  of  (11) t o  get  from the parameters of  t he  curve the  approxi- 

mated course of ( A h 5  7 (Fig. li), and the average r i g i d i t y  f and (Fh). 2 By 

t h e  method o f  t h e  l e a s t  squares we g e t  from Fig. 4 

N 

It i s  d i f f i c u l t  t o  ind ica te  the  exact value of 

between 

g s i n c e  the  relat ionship 
rJ 

and N i s  obtained by averaging (6) which depends, t o  a marked de- 

gree, on the  spec i f ic  form of E(&; nevertheless, taking in to  account (2)  

We sha l l  now demonstrate t h a t  to evaluate K and M i n  t he  system (3) - 
(4)  we were j u s t i f i e d  i n  disregarding mmber 6 n ,  From (I&) - (Ij) we can 

ge t  t h e  following expression f o r  < ( A X ~ ! Z ~ _  

Ni th ' r  .k 2 from (19) taking i n t o  account (16) it follows 

From (20) and (17), (18) it f o l l o w s  t h a t  b 5 0.6; a s  w e  can see from Fig. 3 

the  influence of t h i s  member, bound to member 6n i n  equation (4) with %" 2 2  

i s  negl igibly small; this demonstrates the v a l i d i t y  of t he  inference made. 

l2 ' t o  ?- represented i n  Fig. 3 can Thus, the  re lat ionship of  ( j r; 
be approximated a s  

10 



with coeff ic ient  2 determined from Fig, 3 

with T rZ: 9 years  

< F i } z G . 6 .  

The good agreement of  estimates (22) and (23) made by various methods poin ts  

to t h e  in t e rna l  agreement o f  approximations used, 

Final ly  we can assume t h a t  < f,'> N 0,s; . Having only an estimate of  

average r i g i d i t y  (and not r i g i d i t y  i n  each point  of t h e  l imi t ing  cycle) and 

a s i tua t ion  i n  which t h e  deviation from t h e  l imi t ing  cycle caused by in t e rna l  

f luc tua t ions  i n  the system are  cumenz~rab le  %Ct.h deviations dEe to llexternal 

noise" ( e r r o r s  i n  observation, influence of  t he  medium i n  the  propagation of 

t he  signal,  e tc . ) ,  it i s  not desirable t o  use eauation (1h) to describe and, 

i n  pa r t i cu la r ,  t o  forecas t  t h e  signal x ( t ) ,  The maximum of  proved informa- 

t i o n  which could be extracted from an ana lys i s  of normal deviations is the  

evaluation of the  mean r i g i d i t y  N and t h e  value < F:> . 
normal d r i f t s  from the  l imi t ing  cycle the  diffuse phases [razmytyye fazy] 

I n  cont ras t  t o  

increase i n  time due t o  tangential  d r i f t s  and very soon pass  beyond the  l i m i t s  

of observation error .  This circumstance should be taken i n t o  account even i n  

* There a r e  several reasons f o r  t h e  s l i g h t  deviation from l i n e a r i t y  which 
occurs i n  Fig. 3: paucity of s t a t i s t i c s ,  l i nea r i za t ion  of equations with ex- 
change of coe f f i c i en t s  changing with phase & t o  constant values [e. g . ,  i f  N ( 6 )  
i s  of a pulsing character  a s  i s  the case with t h e  sun [l?] t h e  deviat ion from 
l i n e a r i t y  should be observed to t S T] etc. However, a s  we can see from Fig. 
3 t he  deviations a re  not  very great, and i n  conformance with the previously 
accepted accuracy of  analysis  the l i n e a r  approximation i s  f u l l y  admissible. 

11 



t h e  coarsest  approximation i n  describing a signal. I n  conformance with the 

conclusion about t he  autonomous s t a t e  of the  System ( K  = 0) we can approxi- 

mate t h e  signal i n  t h e  following manner 
X ( t J " r , ~ e i t } ~ ~ x ~ ( t + a l t ) )  ; c =  j& d e ; /  I 

'de w i l l  compute the  accuracy of the  value obtained f o r  a period o f  

T ,", 9 years,  This accuracy i s  determined by the  length  of  the  time series 

of observation. 

m - 20 cycle through tm we have the  following obvious equal i t ies :  

Designating the  moment of advent o f  a f ixed phase f o r  

f * + ,  - f, = "T+&'(.;l-Jiffk+,) 

T =  .-il 
; 

gT ; <ST> = 0 , m 
For t h e  dispersion o f  random value 67- we net  

((&T)'} = ia(b+&)-&( f,)J'> , , 
m =  

o r ,  using t h e  previously determined values (F2) a n d A  , 

Thus, t h e  standard e r ror  i n  deteminin? t h e  pariad 

4z)T = 1,2i years. 

Individual cycles have standard deviations t h a t  a r e  6 greater  than 

(23) which with a mean duration of t h e  cycle 9 2 1 .2  years  i s  equal to 

. ~ 3 . 4  years. Obviously this does not contradict  the  observed duration of  

t he  two l a s t  cycles on the brightness curve of 3C 27'3 by about 1 3  years. We 

w i l l  mention, i n  passing, t h a t  Schmidt'' m.entioned the value of T = 13 years  

a s  the period o f  change i n  flux from 3C 273; apparently he bore i n  mind only  

t he  l a s t  two cycles, The use of t h i s  value a s  t he  cha rac t e r i s t i c  o f  the  

tr ibrational system period i s  not convincing i n  v i e w  of  the  above indicated 

changes i n  duration of  individual cycles (we should add t h a t  the f i r s t  cycles  

12 



observed had a duration of 7-8 years, a s  can be seen from Fig, 1); we a r e  more 

j u s t i f i e d  i n  using a mean value found by a method l i k e  the  one s e t  f o r t h  i n  

the  above, It should also be mentioned t h a t  t h e  mater ia ls  a t  hand do not 

allow u s  t o  judge a s  t o  whether systematic changes ex i s t  i n  the continuance 

of t h e  cycle with the  passage of time. 

111. Results of ana lys i s  

On the  bas i s  o f  t he  foregoing we have reached the  following conclusions: 

1. The period o f  dynamic movement o f  the  system studied is T = 9 1.2 

years,  

2. The system i s  non-linear, the mean r i g i d i t y  i s  pos i t ive ,  and 

’N” r3r 1 year-’. 

i . e . ,  it re tu rns  t o  move i n  the  l imit ing cycle with s l i gh t  changes i n  i n i t i a l  

con& t i o n  s. 

3. 

The existence of r ig id i ty  insures  s t a b i l i t y  to the  System, 

On the  bas i s  of the materials on hand synchronization i s  not mani- 

fes ted  so t h a t  we can speak about the autonomous nature of  t he  system. 

consequence of t h i s  i s  t h e  diffusional  law o f  increase i n  phase dispersion 

with the  passage of time2’. 

A 

4, The periodic solution corresponding to t he  movement according t o  t h e  

l imi t ing  cycle i s  m = 0: 125 sin 2 i i  9 . 
5. The chaotic component of veloci ty  of movement i n  the  l imi t ing  cycle 

is of  t h e  regular order ( -i 1- 

We will make several  remarks per ta ining t o  the  r e l i a b i l i t y  of t h e  con- 

c lusions made. 

spec i f ic  impression on the  s t a t i s t i c a l  ana lys i s  made. We a re  seeking only 
m 2 

mean estimates for four parameters: N,  (F > (according to curve i n  Fig. n 

4) and a ,  K (on curve i n  Fig. 3). 

der iva t ives  of these basic values, 

The smallness of the t i m e  s e r i e s  (8  cycles i n  a l l )  imposes a 

Estimates o f  a l l  the  other  values a re  

I n  addition, it seems t h a t  one of t he  



parameters i s  very small ( K  CZ 0 ) .  Thus, from the  curve consisting o f  70 

poin ts  we estimate three  parameters, which i s  qui te  usual i n  s t a t i s t i c a l  

p r  a. c t i c e  s . 
It i s  difficult  t o  s t a t e  whether t he  mathematical model ( e s sen t i a l ly  an 

approximational one) w i l l  be retained within the  previous bounds o r  whether 

it will become more complex i n  measure a s  t he  time se r i e s  o f  observations i s  

extended; but one way o r  the other it i s  ce r t a in  t h a t  the  values o f  t h e  

parameters determined above w i l l  not change very great ly ,  

IV, Comarison with theoret ical  v a r i a b i l i t v  models 

A short  time a f t e r  the  discovery of v a r i a b i l i t y  i n  rad ia t ions  given off  

by quasars a var ie ty  of i deas  w a s  expressed a s  t o  the  reasons f o r  t h i s  phenome- 

non. It i s  hard to disagree with the concept t h a t  v a r i a b i l i t y  i n  rad ia t ions  

by quasars i s  such a fundamental property t h a t  i t s  mechanism should, i n  t h e  

f i n a l  analysis,  be explained within t'rie f ramexork of  cnncnpts dealing with 

the  very nature o f  t he  sowces . More spec i f i c i a l ly ,  t he  mechanism o f  var i -  

a b i l i t y  should be t i e d  i n  with processes accuz-ring i n  t h e  cent ra l  region of 

* 

the  quasar whence the  luminous continuum emanates. 

t h e  quasar i s  evolved from a sequence o f  radio galaxies a s  a special ,  morpho- 

The question a s  t o  whether 

l og ica l  type t h a t  had no precedent, o r  whether it i s  a special  stage of 

evolution of already known radio galaxies should be resolved by other  methods, 

I n  pa r t i cu la r ,  there  a r e  de f in i t e  bases 19920 t o  assume the  quas i - s te l la r  ob- 

j e c t s  a r e  re la ted  to the  Safertovskiy galaxies,  In  any case, t he  cent ra l  

re r ion  of the  quasar and i t s  core, which y i e l d s  a considerable port ion if not 

, 10 

t h a t  v a r i a b i l i t y  may be t i e d  i n  with t h e  changing transparency o f  t h e  hydro- 
gen cloud which srrrounds t h e  central  source. 
Schmidt assumes t h a t  t h e  luminous va r i a t ions  occur when l i g h t  i n t e r s e c t s  the  
NP region about the  quasar i f  t h i s  region has a filamentary structure.  
evaluations tending to demonstrate t he  p o s s i b i l i t i e s  o f  t h i s  mechanism were 
c i t e d  i n  C18], From what i s  s e t  f o r t h  i n  t h e  following it appears t h a t  the  
s i t ua t ion  i s  improbable, 

* To be Sure there  was the  opinion expressed by Greenstein and Young 

Making the  point  more concrete, 

No 
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the  en t i r e  uninterrupted spectrum changing with time, presents  the  g rea t e s t  

r i dd le  and develops the  quasar a s  a specif ic  phenonmenon. 

i n  t h i s  connection, i s  the  f a c t  t h a t  attempts t o  resolve the  problem of qua- 

s a r s  a r e  based, mainly, on the hypothesis regarding the  nature of t h e i r  

nuclei. 

from the  poin t  of view o f  t he  extent t o  which the mechanism of v a r i a b i l i t y  

t i e d  i n  with t h i s  model s a t i s i f e s  the necessary observation requirements 

obtained i n  Chapter I1 and summarized i n  Chapter III. I n  t h i s ,  it i s  neces- 

sary t o  exclude from consideration those of the  ex is t ing  quasar models which 

do not  contain a non-constrained mechanism o f  v a r i a b i l i t y  o r  which merely 

make a pretense a t  explaining the short durabi l i ty ,  sporadic changes i n  

brightness.  

Not surpr is ing,  

Hence, models current ly  extant of quasars w i l l  be analyzed only 

It should be mentioned t h a t  many models o f  quasars a s  well a s  mechanisms 

of w r i a b i l i t y  a r e  based on concepts of t he  them-al nature of rad ia t ion ,  

f u l  observations recent ly  made have demonstrated the  inconsistency of this 

view5*21,22; rad ia t ion  from the core o f  a quasar [in the case of 3C 273 it 

i s  mainly infrared]  i s  magneto-decelerating 5, 21, 23, 24. Hence, ce r t a in  

models i n  the  va r i a t ion  proposed are no longer needed and should be modified 

e s sen t i a l ly ,  i f  possible.  

Care- 

Models of quasars i n  which long periodic changes i n  luminous emittance 

a re  studied can be divided i n t o  three categories  insofar  a s  the  mechanisms 

of v a r i a b i l i t y  a r e  concerned: a)  imposition of random events; b) ro ta tory  

models; c )  o sc i l l a to ry  models, We s h a l l  consider each one individually.  

a )  Imposition of random events 

Hoyle and Fowler25 regarded the quasar as a small region which had under- 

gone fragmentation i n t o  a mul t ip l ic i ty  of objects .  

t0 one another, the ob jec t s  a re  subject t o  frequent c o l l i s i o n  with the 

Because of the  proximity 



r e su l t an t  grea t  l i be ra t ion  of energy. 

of va r i ab i l i t y ,  po in ts  t o  t h e  rapid nuclear evolution of individual fragments, 

A similar  idea t h a t  preceded 25 was discussed by i n  a model of t h i s  

idea t h e  luminous var ia t ions  were due t o  c o l l i s i o n s  of neighboring fragments, 

The most highly developed model o f  this type was proposed by Field 

cording to 27 t h e  quasar i s  a spheroidal galaxy i n  the  stage of intensive 

s t a r  formation. Variations i n  luminous f lux  a r e  re la ted  t o  f l a r e s  of t he  

supernova XI type. 

necessary t o  have about Jo supernovas; it i s  confirmed t h a t  by imposing inde- 

pendent explosions we can ge t  a rough approximation of t h e  observed p i c tu re  

o f  va r i ab i l i t y .  Understanding the  contradiction between the  short  duration 

of i l luminat ion of  a supernova compared with t h e  required t i m e  scale of var i -  

a b i l i t y ,  F i l t s  t u rns  t o  the  mechanisn proposed by Colgate and Cameron (to ex- 

plain t h e  f l a r e  phenomena i n  quasars)28, according t o  which radiat ion occurs 

following t h e  in te rac t ion  of  the  shock wave, created by t h e  supernova, upon 

t'ne sui*roundirig ~ e r y  dense gas, 

Reference 25, i n  speaking of sources 

27 . Ac- 

TO insure  an average luminosity of 11.10~5 erg/sec it i s  

The concepts developed by Field run counter t o  a number o f  serious ob- 

jec t ions  ( c f  a l so  30) .  

lies i n  t h e  inf ra red  and submillimeter region22, so t h a t  the  y i e ld  i n  the  

uninterrupted spectrum cons t i tu tes  3.10"~ e r g / ~ e c ~ ~  (cf also 23), it i s  neces- 

sary t o  involve i n  the  process of s t a r  formation a cloud with a mass of up t o  

1OI2 M , which is a great deal la rger  than t h e  ordinary mass o f  an e l l i p t i -  

c a l  galaxy, Further, the  c lear ly  expressed and s tab le  per iodic i ty  o f  t he  

smoothed curve of brightness (Fig. 1.) cannot be reconciled with the  random 

processes of supernova f l a r e s  considered i n  reference 27. I n  addition, t he  

requirement f o r  a number o f  supernovas, i n  connection with the  new observa- 

t ions22 i s  raised by an order compared with 27, and t h i s  r e s u l t s  i n  a still 

Since the energetic m a x i m u m  of radiat ion of  3C 273 
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grea ter  "erosion" of the  overa l l  brightness curve, The nature o f  t he  spec- 

trums of quasar ob jec ts  reminds one very l i t t l e  o f  t h e  spectrums o f  super- 

novas. Thus, the p e c u l i a r i t i e s  o f  changing rad ia t ions  of  a quasar cannot be 

explained within the  framework of a F ie ld  model i f  we do not tu rn  t o  a hypo- 

t h e t i c a l  ensemble of ob jec ts  re la ted  to one another i n  a de f in i t e  manner, 

which a r e  d i f f e ren t  from conventional supernovas, 

A more general conclusion i s  that a l l  mechanisms of  v a r i a b i l i t y  (c f  a lso 

14) which a re  based on the imposition of a la rge  number o f  random events 

uniformly d is t r ibu ted  i n  time 
* 

should have a very broad and smooth spectrum 

of frequencies whereas the. va r i ab i l i t y  of  3C 273 shows a w e l l  expressed nine- 

year  harmonic. 

b) + t a t o m  models 

The suggestion was made i n  reference 25 t h a t  long period var ia t ions  can 

-1 .-.,. 
alr3v 5e cased .  by t h e  ro ta t ion  of  t h e  nucleus. A similar var ia t ion  within 

the  framework of the  magneto-decelerating nature of radiat ion was considered 

i n  13 i n  which i s  discussed the  relationship of t M s  ro ta t ion  t o  the movement 

i n  the  emission she l l  o f  3C 273. 

The proposal i s  made i n  reference 1 3  t h a t  the  ro ta t ing  nucleus i s  sup- 

ported i n  the  quasi-stationary condition by magneto-turbulent pressure. 

t i o n  i s  one of the  a l t e rna te  p o s s i b i l i t i e s  involving period modulations of 

Rota- 

the  magnetic f i e l d  i n  which there  i s  a radiat ion o f  r e l a t i v i s t i c  e lectrons.  

Var i ab i l i t y  can take place i n  accordance with reference 13  i f  the  l i n e  of  

s igh t  i n t e r s e c t s  a quasi-regular heterogeneous f i e l d  given a ro ta t ing  region 

with var iab le  in tens i ty .  It i s  assumed here, t h a t  t he  cycle of  change o f  

br ightness  coincides, on the  average, with the  period o f  rotat ion.  Sporadic 

* The heterogeneous d is t r ibu t ion  of random events i n  time ac tua l ly  poin ts  
to a synchronizing mechanism, %.e., it makes t h e  model more complex without 
resolving any o f  the  d i f f i cu l t i e s .  



perturbat ions caused by turbulence can be imposed on t h e  regular v a r i a b i l i t y ,  

Analysis of this model leads  us  t o  conclude t h a t  t h e  imposition o f  

lfnoisell on a periodic solution produced by ro ta t ion  w i l l  result i n  a constant 

dispersion of phase i n  the outgoing signal,  Noreover, according to t he  analy- 

sis made above, (c f .  p t .  3 i n  Chap. 111). t he  phase dispersion grows monotoni- 

c a l l y  with time. I n  addition, t h e  average r i g i d i t y  of t he  ro ta t ing  System, 

given a Symmetrical form of l imit ing cycle, i s  equal to zero, whereas t h e  ob- 

served mean r i g i d i t y  i s  N -1. 
rv 

Both these circumstances enable one t o  con- 

clude t h a t  ro ta t ion  with a period close t o  the  observed duration of cycle i s  

not t h e  d i r e c t  reason f o r  the  va r i ab i l i t y ,  

An a l t e rna te  poss ib i l i t y  i s  the case i n  which the  ro t a t ion  of source i s  

considerably slower than the  duration of the  cycle. 

i s  caused by the  in t e r sec t ion  of the l i n e  of s igh t  by heterogeneous p a r t i c l e s  

Here, t he  v a r i a b i l i t y  

a f  Cy3 m r f a c n  o f  t h e  quasar nucleus. In  other  words, t he  v a r i a b i l i t y  ob- 

served i s  a temporary development i n  the  spa t i a l  plane of  these sec tors  - 
l'lobesft, 

view could be in te rpre ted  as the  r e su l t  of t h e  passage of  e ight  "lobeslf i n  

t he  plane of the  sky, 

growth i n  phase dispersion with time) can be sa t i s f ied .  

By way o f  exanple, t h e  eight cycles  observed from t h i s  point  of 

I n  t h i s  connection, the  conclusion 3, Chapter I11 ( the  

However, t he  l a rge  

value fo r  r i g i d i t y  obtained i n  the above contradicts  t h i s  modification o f  a 

rotatory model. Actually, t o  explain t h e  required r i g i d i t y ,  it would be 

necessary fo r  t he  deflection o f  radiation o f  each "lobe" from the  mean t o  be 

not random, but select ive i n  a very special  manner. Similar,  very a r t i f i c i a l  

requirements of  t h e  "lobes" should be s e t  fo r th  i f  we consider such a m u l t i -  

lobed ' la i r  vane" a s  an absorbing system and not a rad ia t ing  system ( c f ,  re- 

marks on [Russian] page 15). [translation Page 141 
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c)  Osc i l la tory  models of va r i ab i l i t y  

We include i n  this group models i n  which v a r i a b i l i t y  i s  insured by d i f -  

f e r en t  o sc i l l a to ry  r a t e s .  

F i r s t  we sha l l  consider attempts to in t e rp re t  v a r i a b i l i t y  o f  f l ux  a s  the  

result of  pulsat ions of a massive object10s29, I n  lo the  parameters of  a 

pulsating massive s t a r  were evaluated from t h e  well known relat ionship 

v35z 9-b involving the  period o f  pulsat ion of  t he  gas sphere with T (  1 J 
i t s  mean density;  f o r  the  nucleus of quasar 3C 273 we got?= 2.10 -10 & / c m  3 , 

-16 A E 2.10 

able f o r  massive s t a r s  whose equilibrium i s  not  determined by t h e  gas pressure 

but by t h e  beam pressure,  and the  correct re la t ionship  w i l l  contain a fac tor  

c m  and M = 3.106,,9. However, t he  re la t ionship  used i s  not s u i t -  

o f  t he  order  (M/N&1/4 (Sc /s )  -1/2 on the  right-hand s ide 29 . More important 

i s  the  f a c t  that it i s  impossible t o  insure,  by t h e  thermal rad ia t ion  of such 

;i "-*-  GuyaA -c+ar", t he  necessary power of  rad ia t ion  fo r  any reasonable time. 

way of example, t h e  necessary output of  -lob7 ergs/sec requires  M 

By 
n 

107M ; 

t h e  balanced existence of  t he  superstar of  such a mass i s  impossible 35936 

I n  references 1 2  and 1 3  t he  proposal was made t h a t  the  quasar i ~ ~ c l e u s  is main- 

ta ined i n  a quasi-balanced s t a t e  by a magnetic f i e ld .  The magneto-decelerating 

radiat ion i n  a changing f i e l d  i s  regarded a s  a mechanism of var iab le  brightness 

of objects.  

gether with t h e  ro ta t ion  considered i n  the  foregoing, a r e  the  pulsat ions of a 

Alternate p o s s i b i l i t i e s  of modulation of a magnetic f i e l d ,  to- 

magnetic superstar and the  circulat ing movements of  plasma in the  nucleus. 

I n  pulsat ions of a superstar t he  l i n e s  of force i n  i t s  magnetic f i e l d  

t h a t  t i e  t he  surface of the s t a r  with the  magneto-sphere of  the nucleus (from 

which the  observed f lux  radiates)  a r e  subject to o s c i l l a t i o n s  which modulate 

the  magnetic f i e l d  i n  the  magnetosphere. 

13  discusses a magnetic superstar with a period of pulsat ion o f  10 years  with 

As a spec i f ic  example, reference 



5 16 M = 10 M,, R = 2.10i5 cm, whose magnetic f i e l d  a t  a distance o f  1 0  c m  i s  

.h,102 - 10  3 oersteds,  and this i s  necessary t o  explain the  opt ica l  and inf ra -  

23 red continuum i n  3C 273 . 
it would be in t e re s t ing  to know how they can be reconciled with observation 

requirements. 

The numerical values given are  i l l u s t r a t i v e ,  but 

This helps  t o  explain the epochal changes i n  the  brightness o f  

13  quasar . 
The pulsat ion i n  the  superstar i s  

occurs i n  t h e  strong magentic f i e l d  of 

13. The mechanism o f  f luctuat ion of a 

maintained due t o  convection which 

the  su2erstar a s  a var iable  i n s t a b i l i t y  12, 

superstar i s  not computed i n  de t a i l .  

Along with this, i f  the  osc i l la t ions  of  a magnetic suporstar are  r e a l l y  rcspon- 

s ib l e  f o r  changes i n  brightness of a quasar t he  conclusions made i n  Chapter I11 

a r e  undoubtedly important a s  requirements f o r  t h e  mechanism of pulsation. Very 

irrlportant i s  the conclusion made about the non-linearily o f  the process o f  

var ia t ion ;  it i s  in t e re s t ing  to compare it with the  process o f  es tabl ishing 

the  amplitude of  va r i a t ion  i n  a convection impeded by a magnetic f i e l d ,  

'wise, the  growth of phase dispersion i n  t h i s  Phc tua t ing  systea appears qui te  

probable. 

Like- 

Another var ia t ion  i n  t h e  pulsating superstar was recent ly  proposed by 

31 Fowler . I n  h i s  model the superstar i s  constr ic ted f r o m  R c m  t o  

R c m ,  following which it returns t o  the  o r ig ina l  s t a t e  due to the  genera- 

t i on  o f  energy by the  nucleus, 

the [ f t p e r e k h l e ~ t ~ ~ ]  "lashing" i s  capable o f  destroying a s t a r ,  t he  rapid 

fluorescence i n  t h e  stage of  maximum expansion i s  no t  taken in to  account, and 

others .  

e n t i r e  quasar nucleus with t h e  superstar a s  proposed i n  references 31 and 10. 

I n  this connection, it i s  only natura l  t o  consider a l t e rna te  p o s s i b i l i t i e s  

f o r  modulating the  f i e ld  i n  the nucleus, but without reference t o  the  superstar.  

14 These ideas  run i n t o  d i f f i c u l t i e s  such as: 

Special emphasis i s  put  on the f a c t  t h a t  we can hardly iden t i fy  the  
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This possible  mechani.sm i s  insured by t h e  very nature of maintaining the  

nucleus i n  equilibrium by the  magnetic field12*13. Specif ical ly ,  the  vor t i -  

c a l  character of the  magnetic f i e l d  prevents pet t ing s t a t i c  equilibrium, but  

it does not exclude a quasi-stationary condition. The evolution of a quasar 

nucleus cons is t s  i n  going through a ser ies  o f  balanced configurations with 

a developed magnetic t u r b u l e n ~ e 3 ~ *  33. 

formation with powerful. magnetic f i e lds  and strong movements which balance 

Such a configuration, consisting o f  a 

the  force of  e rav i ta t ion ,  i s  ca l led  a lfmagnetoidft 33 . The evolution of a magne- 

t o i d  may be associated with the  evolution of a cons t r ic t ing  massive cloud i n  

which the  magnetic enerm was or iginal ly  comparable t o  the grav i ta t iona l  energy 

and upon cons t r ic t ion  it grew more rapidly due t o  the  f l o w  of  ro t a t iona l  enerey 

and t h e  energy of chaotic movements i n t o  magnetic energy, 

c i r cu la t ion  of heterogeneities w i t h  t he  ''frozen in" magnetic f i e l d  could ex- 

p l a in  the  cyclical changes i n  flux from the quasar nucleus, 

superimposed on the  main movement can be re la ted  t o  the  f luc tua t ion  and sporadic 

" f la re f f  type phenomena, 

The l a r g e  scale 

The turbulence 

One of  the  more simple models o f  a magnetoid, which is a prec ise  sol;;tton 

of a magnetic gas dynamics equation, i s  the  ro ta t ion  of  t he  plasma along the  

l i n e s  o f  force of a to ro ida l  magnetic f i e l d .  

nuclear mass o f  10% 

order o f  several years12 -- and tha t  i s  what i s  required, 

u s  t h e  cor rec t  order of magnitude f o r  t h e  time o f  c i rcu la t ion  of heterogeneity 

o f  a magnetic f i e l d  i n  more complex models f o r  which a precise  solution and 

the  study o f  i t s  s t a b i l i t y  i s  fraught with numerous d i f f i c u l t i e s .  

The period of  ro ta t ion  with a 

and a charac te r i s t ic  dimension o f  k.1016 cm i s  o f  t h e  

T h i s  model gives 

Given a c i rcu la t ing  movement of t h e  plasma i n  t h e  quasar nucleus t h e  pres- 

ence of  turbulence should bring about a condition i n  which the preceding 

cycle  imposes a weak impression on the  succeeding one: one turn  will occur 
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more rapidly due to f luctuat ions,  and the  one succeeding will hardly "notice" 

it, Therefore, phase dispersion w i l l  increase,  just a s  required by observa- 

t i o n  ( c f .  Chapter 111). The presence of a l a rge  scale  movement insures  

r i g i d i t y  to a given osc i l l a to ry  system, and this can a l so  be reconciled w i t h  

t he  necessary observational requirements. 
N 

With a r i g i d i t y  o f  N I year'' 

t he  time f o r  suppressing the  fluctuation t A- I year,  a s  we can see from (14). 

The d iss ipa t ion  of e n e r a  of corresponding f luc tua t ing  movements can be i n -  

sured by t h e  generation of cosmic rays. 

Hence, among t h e  models considered, t h e  osc i l l a to ry  model i s  the  most 

probable one t o  explain the  mechanism o f  v a r i a b i l i t y  i n  a quas i - s te l la r  ob- 

jec t .  

s t a r  and c i rcu la t ing  movements i n  producing v a r i a b i l i t y  were not made there  i s  

b a s i s  t o  regard t h e  second a s  the  more probable reason f o r  the  va r i ab i l i t y .  

Such a select ion should be made i f  the appearance of t he  phenomena o f  quasi- 

Although a numerical evaluation of t h e  r e l a t i v e  r o l e  of a magnetic super- 

s t e l l a r  sources i s  recurrent  i n  character 19** and v a r i a b i l i t y  i s  present i n  

all 2nases L n t ~ e e i ?  S-X::=?ES~VB axplosions. 

superstar with a mass of 105NL;'is o f  t he  order o f  I O 4 ,   herea as^^ t he  intervals 

Actually, t he  time of  l i f e  o f  a 

between f l a r e s  are  of one to twu orders greater  i f  we are  to judge, f o r  ex- 

ample, by the  distance of t he  ejections. 

Were, we d id  not  concern ourselves with an analysis  of t h e  possible  models 

of c i rcu la t ing  movements and comparing them with the inferences i n  Chapter 111. 

These problems a re  the subject of fur ther  investigations.  

The authors a re  gra te fu l  to  L. I. Gudzenko for  h i s  guidance i n  t h i s  

a r t i c l e ,  
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Fig. 1. Brightness curve of 3C 273 following slide smoothing 
and after being cleared of secular trend. 

Fig. 2. Mean s ta t i s t i ca l  trajectory. 
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